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Motivation Switching active controls Flow control & Shocks

Motivation

Systems with two ore more active controllers or design
parameteres

Systems with several components on the state (sometimes
hidden !!!)

Goals

Make control and optimization algorithms more performant by
switching

Develop strategies for switching
Enrique Zuazua Switching controls
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Related topics and methods

Splitting, domain decomposition, Lie’s Theorem:

eA+B = lim
n→∞

[eA/neB/n]n

εA+B ∼ eA/neB/n....eA/neB/n, for n large .
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Motivation

To develop systematic strategies allowing to build switching
controllers.
The controllers of a system endowed with different actuators are
said to be of switching form when only one of them is active in
each instant of time.
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The finite-dimensional case

Consider the finite dimensional linear control system{
x ′(t) = Ax(t) + u1(t)b1 + u2(t)b2

x(0) = x0.
(1)

x(t) =
(
x1(t), . . . , xN(t)

)
∈ RN is the state of the system,

A is a N × N−matrix,
u1 = u1(t) and u2 = u2(t) are two scalar controls
b1, b2 are given control vectors in RN .
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More general and complex systems may also involve switching in
the state equation itself:

x ′(t) = A(t)x(t) + u1(t)b1 + u2(t)b2, A(t) ∈ {A1, ...,AM}.

These systems are far more complex because of the nonlinear effect
of the controls on the system.

Examples: automobiles, genetic regulatory networks, network
congestion control,...
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Controllability:

Given a control time T > 0 and a final target x1 ∈ RN we look for
control pairs

(
u1, u2

)
such that the solution of (1) satisfies

x(T ) = x1. (2)

In the absence of constraints, controllability holds if and only if the
Kalman rank condition is satisfied[

B, AB, . . . ,AN−1B
]

= N (3)

with B =
(
b1, b2

)
.
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We look for switching controls:

u1(t)u2(t) = 0, a.e. t ∈ (0, T ). (4)

Under the rank condition above, these switching controls always
exist.
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The classical theory guarantees that the standard controls (u1, u2)
may be built by minimizing the functional

J
(
ϕ0
)

=
1

2

∫ T

0

[
|b1 · ϕ(t)|2 + |b2 · ϕ(t)|2

]
dt − x1 · ϕ0 + x0 · ϕ(0),

among the solutions of the adjoint system{
−ϕ′(t) = A∗ϕ(t), t ∈ (0, T )
ϕ(T ) = ϕ0.

(5)

The rank condition for the pair (A,B) is equivalent to the
following unique continuation property for the adjoint system
which suffices to show the coercivity of the functional:

b1 · ϕ(t) = b2 · ϕ(t) = 0, ∀t ∈ [0,T ]→ ϕ ≡ 0.
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The same argument allows considering, for a given partition
τ = {t0 = 0 < t1 < t2 < ... < t2N = T} of the time interval
(0,T ), a functional of the form

Jτ
(
ϕ0
)

=
1

2

N−1∑
j=0

∫ t2j+1

t2j

|b1 · ϕ(t)|2dt +
1

2

N−1∑
j=0

∫ t2j+2

t2j+1

|b2 · ϕ(t)|2dt

−x1 · ϕ0 + x0 · ϕ(0).

Under the same rank condition this functional is coercive too. In
fact, in view of the time-analicity of solutions, the above unique
continuation property implies the apparently stronger one:

b1·ϕ(t) = 0 t ∈ (t2j , t2j+1); b2·ϕ(t) = 0 t ∈ (t2j+1, t2j+2)→ ϕ ≡ 0

and this one suffices to show the coercivity of Jτ . Thus, Jτ has an
unique minimizer ϕ̌ and this yields the controls

u1(t) = b1·ϕ̌(t), t ∈ (t2j , t2j+1); u2(t) = b2·ϕ̌(t), t ∈ (t2j+1, t2j+2)

which are obviously of switching form.
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Drawback of this approach:

The partition has to be put a priori. Not automatic

Controls depend on the partition

Hard to balance the weight of both controllers. Not optimal.
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Under further rank conditions, the following functional, which is a
variant of the functional J, with the same coercivity properties,
allows building switching controllers, without an a priori partition
of the time interval [0,T ]:

Js(ϕ0) =
1

2

∫ T

0
max

(∣∣b1 · ϕ(t)
∣∣2, ∣∣b2 · ϕ(t)

∣∣2)dt−x1·ϕ0+x0·ϕ(0).

(6)

Theorem

Assume that the pairs (A, b2 − b1) and (A, b2 + b1) satisfy the
rank condition. Then, for all T > 0, Js achieves its minimum at
least on a minimizer ϕ̃0. Furthermore, the switching controllers{

u1(t) = ϕ̃(t) · b1 when
∣∣ϕ̃(t) · b1

∣∣ > ∣∣ϕ̃(t) · b2

∣∣
u2(t) = ϕ̃(t) · b2 when

∣∣ϕ̃(t) · b2

∣∣ > ∣∣ϕ̃(t) · b1

∣∣ (7)

where ϕ̃ is the solution of (5) with datum ϕ̃0 at time t = T,
control the system.
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1 The rank condition on the pairs
(
A, b2 ± b1

)
is a necessary

and sufficient condition for the controllability of the systems

x ′ + Ax =
(
b2 ± b1

)
u(t). (8)

This implies that the system with controllers b1 and b2 is
controllable too but the reverse is not true.

2 The rank conditions on the pairs
(
A, b2 ± b1

)
are needed to

ensure that the set{
t ∈ (0, T ) :

∣∣ϕ(t) · b1

∣∣ =
∣∣ϕ(t) · b2

∣∣} (9)

is of null measure, which ensures that the controls in (7) are
genuinely of switching form.
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Sketch of the proof:

There are two key points:
a) Showing that the functional Js is coercive, i. e.,

lim
‖ϕ0‖→∞

Js(ϕ0)

‖ ϕ0 ‖
=∞,

which guarantees the existence of minimizers.
Coercivity is immediate since

|ϕ(t) · b1|2 + |ϕ(t) · b2|2 ≤ 2 max
[
|ϕ(t) · b1|2, |ϕ(t) · b2|2

]
and, consequently, the functional Js is bounded below by a
functional equivalent to the classical one J.
b) Showing that the controls obtained by minimization are of
switching form.
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This is equivalent to proving that the set

I = {t ∈ (0, T ) : |ϕ̃ · b1| = |ϕ̃ · b2|}

is of null measure.
Assume for instance that the set
I+ = {t ∈ (0, T ) : ϕ̃(t) · (b1 − b2) = 0} is of positive measure, ϕ̃
being the minimizer of Js . The time analyticity of ϕ̃ · (b1 − b2)
implies that I+ = (0, T ). Accordingly ϕ̃ · (b1 − b2) ≡ 0 and,
consequently, taking into account that the pair (A, b1 − b2)
satisfies the Kalman rank condition, this implies that ϕ̃ ≡ 0. This
would imply that

J(ϕ0) ≥ 0, ∀ϕ0 ∈ RN

which may only happen in the trivial situation in which
x1 = eAT x0, a trivial situation that we may exclude.
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The Euler-Lagrange equations associated to the minimization of Js

take the form∫
S1

ϕ̃(t)·b1 ψ(t)·b1dt+

∫
S2

ϕ̃(t)·b2 ψ(t)·b2dt−x1·ψ0+x0·ψ(0) = 0,

for all ψ0 ∈ RN , where{
S1 = {t ∈ (0, T ) : |ϕ̃(t) · b1| > |ϕ̃(t) · b2|},
S2 = {t ∈ (0, T ) : |ϕ̃(t) · b1| < |ϕ̃(t) · b2|}.

(10)

In view of this we conclude that

u1(t) = ϕ̃(t) · b1 1S1(t), u2(t) = ϕ̃(t) · b2 1S2(t), (11)

where 1S1 and 1S2 stand for the characteristic functions of the sets
S1 and S2, are such that the switching condition holds and the
corresponding solution satisfies the final control requirement.
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Optimality:

The switching controls we obtain this way are of minimal

L2
(

0, T ; R2
)

-norm, the space R2 being endowed with the `1

norm, i. e. with respect to the norm

||(u1, u2)||L2(0,T ; `1) =
[ ∫ T

0
(|ũ1|+ |ũ2|)2dt

]1/2
.

Enrique Zuazua Switching controls



Motivation Switching active controls Flow control & Shocks Motivation The finite-dimensional case The 1− d heat equation Open problems

Outline

1 Motivation

2 Switching active controls
Motivation
The finite-dimensional case
The 1− d heat equation
Open problems

3 Flow control & Shocks
Motivation
Equation splitting
An example on inverse design
Open problems

Enrique Zuazua Switching controls



Motivation Switching active controls Flow control & Shocks Motivation The finite-dimensional case The 1− d heat equation Open problems

Failure of the switching strategy

Consider the heat equation in the space interval (0, 1) with two
controls located on the extremes x = 0, 1:

yt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = u0(t), y(1, t) = u1(t), 0 < t < T
y(x , 0) = y0(x), 0 < x < 1.

We look for controls u0, u1 ∈ L2(0, T ) such that the solution
satisfies

y(x , T ) ≡ 0.
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To build controls we consider the adjoint system
ϕt + ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , T ) = ϕ0(x), 0 < x < 1.

It is well known that the null control may be computed by
minimizing the quadratic functional

J(ϕ0) =
1

2

∫ T

0

[
|ϕx(0, t)|2 + |ϕx(1, t)|2

]
dt +

∫ 1

0
y0(x)ϕ(x , 0)dx .

The controls obtained this way take the form

u0(t) = −ϕ̂x(0, t); u1(t) = ϕ̂x(1, t), t ∈ (0, T ) (12)

where ϕ̂ is the solution associated to the minimizer of J.
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For building switching controls we rather consider

Js(ϕ0) =
1

2

∫ T

0
max

[
|ϕx(0, t)|2, |ϕx(1, t)|2

]
dt+

∫ 1

0
y0(x)ϕ(x , 0)dx .

But for this to yield switching controls, the following UC is needed.
And it fails because of symmetry considerations!

meas {t ∈ [0,T ] : ϕx(0, t) = ±ϕx(1, t)} = 0.
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This strategy yields switching controls for the control problem with
two pointwise actuators:

yt − yxx = ua(t)δa + ub(t)δb, 0 < x < 1, 0 < t < T
y(0, t) = y(1, t) = 0, 0 < t < T
y(x , 0) = y0(x), 0 < x < 1,

under the irrationality condition

a± b 6= m

k
, ∀k ≥ 1, m ∈ Z.
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1 How many times do these controls switch?

2 In a general PDE setting this leads to unique continuation
problems of the form:

ϕt + A∗ϕ = 0; |B∗1ϕ| = |B∗2ϕ| → ϕ = 0??????

3 Systems where the state equation switches as well.

References:

M. Gugat, Optimal switching boundary control of a string to
rest in finite time, preprint, October 2007.

E. Z., Switching controls, preprint, 2008.
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Solutions of hyperbolic systems may develop shocks or quasi-shock
configurations and this may affect in a significant manner control
and design problems.

For shock solutions, classical calculus fails;

For quasi-shock solutions the sensitivity is so large that
classical sensitivity clalculus is meaningless.
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Burgers equation

Viscous version:

∂u

∂t
− ν ∂

2u

∂x2
+ u

∂u

∂x
= 0.

Inviscid one:
∂u

∂t
+ u

∂u

∂x
= 0.
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In the inviscid case, the simple and “natural” rule

∂u

∂t
+ u

∂u

∂x
= 0→ ∂δu

∂t
+ δu

∂u

∂x
+ u

∂δu

∂x
= 0

breaks down in the presence of shocks

δu = discontinuous, ∂u
∂x = Dirac delta ⇒ δu ∂u

∂x ????

The difficulty may be overcame with a suitable notion of measure
valued weak solution using Volpert’s definition of conservative
products and duality theory (Bouchut-James, Godlewski-Raviart,...)
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A new viewpoint: Solution = Solution + shock location. Then the
pair (u, ϕ) solves:

∂tu + ∂x(
u2

2
) = 0, in Q− ∪ Q+,

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

, t ∈ (0,T ),

ϕ(0) = ϕ0,

u(x , 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.
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The corresponding linearized system is:

∂tδu + ∂x(uδu) = 0, in Q− ∪ Q+,

δϕ′(t)[u]ϕ(t) + δϕ(t)
(
ϕ′(t)[ux ]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0,T ),

δu(x , 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999),
Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau
(2002), Ulbrich (2003), ...
None seems to provide a clear-cut recipe about how to proceed
within an optimization loop.
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A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, 2008.
Ingredients:

The shock location is part of the state.

State = Solution as a function + Geometric location of
shocks.

Alternate within the descent algorithm:

Shock location and smooth pieces of solutions should be
treated differently;
When dealing with smooth pieces most methods provide
similar results;
Shocks should be handeled by geometric tools, not only those
based on the analytical solving of equations.

Lots to be done: Pattern detection, image processing,
computational geometry,... to locate, deform shock locations,....
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Compare with the use of shape and topological derivatives in
elasticity:
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An example: Inverse design of initial data

Consider

J(u0) =
1

2

∫ ∞
−∞
|u(x ,T )− ud(x)|2dx .

ud = step function.
Gateaux derivative:

δJ =

∫
{x<ϕ0}∪{x>ϕ0}

p(x , 0)δu0(x) dx + q(0)[u]ϕ0δϕ0,

(p, q) = adjoint state

−∂tp − u∂xp = 0, in Q− ∪ Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0,T )
q′(t) = 0, in t ∈ (0,T )
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x ,T )−ud )2]

ϕ(T )

[u]ϕ(T )
.
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The gradient is twofold= variation of the profile + shock
location.

The adjoint system is the superposition of two systems =
Linearized adjoint transport equation on both sides of the
shock + Dirichlet boundary condition along the shock that
propagates along characteristics and fills all the region not
covered by the adjoint equations.
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State u and adjoint state p when u develops a shock:
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A new method: splitting+alternating descent

Generalized tangent vectors (δu0, δϕ0) ∈ Tu0 s. t.

δϕ0 =

(∫ ϕ0

x−
δu0 +

∫ x+

ϕ0

δu0

)/
[u]ϕ0 .

do not move the shock δϕ(T ) = 0 and

δJ =

∫
{x<x−}∪{x>x+}

p(x , 0)δu0(x) dx ,{
−∂tp − u∂xp = 0, in Q̂− ∪ Q̂+,
p(x ,T ) = u(x ,T )− ud , in {x < ϕ(T )} ∪ {x > ϕ(T )}.

For those descent directions the adjoint state can be computed by
“any numerical scheme”!
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Analogously, if δu0 = 0, the profile of the solution does not
change, δu(x ,T ) = 0 and

δJ = −
[

(u(x ,T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·,T )]ϕ(T )
δϕ0.

This formula indicates whether the descent shock variation is
left or right!

WE PROPOSE AN ALTERNATING STRATEGY
FOR DESCENT

In each iteration of the descent algorithm do two steps:

Step 1: Use variations that only care about the shock location

Step 2: Use variations that do not move the shock and only
affect the shape away from it.

Enrique Zuazua Switching controls



Motivation Switching active controls Flow control & Shocks Motivation Equation splitting An example on inverse design Open problems

Analogously, if δu0 = 0, the profile of the solution does not
change, δu(x ,T ) = 0 and

δJ = −
[

(u(x ,T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·,T )]ϕ(T )
δϕ0.

This formula indicates whether the descent shock variation is
left or right!

WE PROPOSE AN ALTERNATING STRATEGY
FOR DESCENT

In each iteration of the descent algorithm do two steps:

Step 1: Use variations that only care about the shock location

Step 2: Use variations that do not move the shock and only
affect the shape away from it.
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Splitting+Alternating wins!
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Sol y sombra!
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Results obtained applying Engquist-Osher’s scheme and the one
based on the complete adjoint system

Splitting+Alternating method.
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Splitting+alternating is more efficient:

It is faster.

It does not increase the complexity.

Rather independent of the numerical scheme.

Extending these ideas and methods to more realistic
multi-dimensional problems is a work in progress and much
remains to be done.
Numerical schemes for PDE + shock detection + shape, shock
deformation + mesh adaptation,...
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The 1− d heat equation
Open problems

3 Flow control & Shocks
Motivation
Equation splitting
An example on inverse design
Open problems
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Open problems

More complex geometry of shocks

Multi-dimensional problems: Shocks are located on
hypersurfaces

Adaptation to small viscosity: quasishocks

Flux identification problems (F. James and M. Sepúlveda)

Interpretation in the context of gradient methods: zig-zag
gradient methods

z ′(t) = −∇J(z);
zk+1 − zk

∆t
= −∇J(zk).
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Thank you!
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