Switching controls

Enrique Zuazua

Basque Center for Applied Mathematics, Bilbao
zuazua@bcamath.org
Inauguration de la Chaire MMSN, École Polytechnique
October 20, 2008

Outline

Enrique Zuazua Switching controls

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The $1-d$ heat equation
- Open problems

Flow control \& Shocks

- Motivation
- Equation splitting
- An example on inverse design
- Open problems

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The $1-d$ heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The $1-d$ heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems
- Systems with two ore more active controllers or design parameteres
- Systems with several components on the state (sometimes hidden !!!)

Goals

- Make control and optimization algorithms more performant by switching
- Develop strategies for switching

Related topics and methods

Splitting, domain decomposition, Lie's Theorem:

$$
\begin{gathered}
e^{A+B}=\lim _{n \rightarrow \infty}\left[e^{A / n} e^{B / n}\right]^{n} \\
\varepsilon^{A+B} \sim e^{A / n} e^{B / n} \ldots . e^{A / n} e^{B / n}, \quad \text { for } n \text { large } .
\end{gathered}
$$

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The $1-d$ heat equation
- Open problems

3 Flow control \& Shocks

- Motivation
- Equation splitting
- An example on inverse design
- Open problems

Motivation

To develop systematic strategies allowing to build switching controllers.
The controllers of a system endowed with different actuators are said to be of switching form when only one of them is active in each instant of time.

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The 1 - d heat equation
- Open problems

3 Flow control \& Shocks

- Motivation
- Equation splitting
- An example on inverse design
- Open problems

The finite-dimensional case

Consider the finite dimensional linear control system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=A x(t)+u_{1}(t) b_{1}+u_{2}(t) b_{2} \tag{1}\\
x(0)=x^{0} .
\end{array}\right.
$$

$x(t)=\left(x_{1}(t), \ldots, x_{N}(t)\right) \in \mathbb{R}^{N}$ is the state of the system,
A is a $N \times N$-matrix,
$u_{1}=u_{1}(t)$ and $u_{2}=u_{2}(t)$ are two scalar controls b_{1}, b_{2} are given control vectors in \mathbb{R}^{N}.

More general and complex systems may also involve switching in the state equation itself:

$$
x^{\prime}(t)=A(t) x(t)+u_{1}(t) b_{1}+u_{2}(t) b_{2}, \quad A(t) \in\left\{A_{1}, \ldots, A_{M}\right\} .
$$

These systems are far more complex because of the nonlinear effect of the controls on the system.

Examples: automobiles, genetic regulatory networks, network congestion control,...

Controllability:

Given a control time $T>0$ and a final target $x^{1} \in \mathbb{R}^{N}$ we look for control pairs $\left(u_{1}, u_{2}\right)$ such that the solution of (1) satisfies

$$
\begin{equation*}
x(T)=x^{1} . \tag{2}
\end{equation*}
$$

In the absence of constraints, controllability holds if and only if the Kalman rank condition is satisfied

$$
\begin{equation*}
\left[B, A B, \ldots, A^{N-1} B\right]=N \tag{3}
\end{equation*}
$$

with $B=\left(b_{1}, b_{2}\right)$.

We look for switching controls:

$$
\begin{equation*}
u_{1}(t) u_{2}(t)=0, \quad \text { a.e. } \quad t \in(0, T) . \tag{4}
\end{equation*}
$$

Under the rank condition above, these switching controls always exist.

The classical theory guarantees that the standard controls $\left(u_{1}, u_{2}\right)$ may be built by minimizing the functional
$J\left(\varphi^{0}\right)=\frac{1}{2} \int_{0}^{T}\left[\left|b_{1} \cdot \varphi(t)\right|^{2}+\left|b_{2} \cdot \varphi(t)\right|^{2}\right] d t-x^{1} \cdot \varphi^{0}+x^{0} \cdot \varphi(0)$,
among the solutions of the adjoint system

$$
\left\{\begin{array}{l}
-\varphi^{\prime}(t)=A^{*} \varphi(t), \quad t \in(0, T) \tag{5}\\
\varphi(T)=\varphi^{0}
\end{array}\right.
$$

The rank condition for the pair (A, B) is equivalent to the following unique continuation property for the adjoint system which suffices to show the coercivity of the functional:

$$
b_{1} \cdot \varphi(t)=b_{2} \cdot \varphi(t)=0, \quad \forall t \in[0, T] \rightarrow \varphi \equiv 0
$$

The same argument allows considering, for a given partition $\tau=\left\{t_{0}=0<t_{1}<t_{2}<\ldots<t_{2 N}=T\right\}$ of the time interval $(0, T)$, a functional of the form

$$
\begin{gathered}
J_{\tau}\left(\varphi^{0}\right)=\frac{1}{2} \sum_{j=0}^{N-1} \int_{t_{2 j}}^{t_{2 j+1}}\left|b_{1} \cdot \varphi(t)\right|^{2} d t+\frac{1}{2} \sum_{j=0}^{N-1} \int_{t_{2 j+1}}^{t_{2 j+2}}\left|b_{2} \cdot \varphi(t)\right|^{2} d t \\
-x^{1} \cdot \varphi^{0}+x^{0} \cdot \varphi(0)
\end{gathered}
$$

Under the same rank condition this functional is coercive too. In fact, in view of the time-analicity of solutions, the above unique continuation property implies the apparently stronger one:
$b_{1} \cdot \varphi(t)=0 \quad t \in\left(t_{2 j}, t_{2 j+1}\right) ; b_{2} \cdot \varphi(t)=0 \quad t \in\left(t_{2 j+1}, t_{2 j+2}\right) \rightarrow \varphi \equiv 0$
and this one suffices to show the coercivity of J_{τ}. Thus, J_{τ} has an unique minimizer $\check{\varphi}$ and this yields the controls
$u_{1}(t)=b_{1} \cdot \check{\varphi}(t), t \in\left(t_{2 j}, t_{2 j+1}\right) ; \quad u_{2}(t)=b_{2} \cdot \check{\varphi}(t), t \in\left(t_{2 j+1}, t_{2 j+2}\right)$
which are obviously of switching form.

Drawback of this approach:

- The partition has to be put a priori. Not automatic
- Controls depend on the partition
- Hard to balance the weight of both controllers. Not optimal.

Under further rank conditions, the following functional, which is a variant of the functional J, with the same coercivity properties, allows building switching controllers, without an a priori partition of the time interval $[0, T]$:

$$
\begin{equation*}
J_{s}\left(\varphi^{0}\right)=\frac{1}{2} \int_{0}^{T} \max \left(\left|b_{1} \cdot \varphi(t)\right|^{2},\left|b_{2} \cdot \varphi(t)\right|^{2}\right) d t-x^{1} \cdot \varphi^{0}+x^{0} \cdot \varphi(0) \tag{6}
\end{equation*}
$$

Theorem

Assume that the pairs $\left(A, b_{2}-b_{1}\right)$ and $\left(A, b_{2}+b_{1}\right)$ satisfy the rank condition. Then, for all $T>0, J_{s}$ achieves its minimum at least on a minimizer $\tilde{\varphi}^{0}$. Furthermore, the switching controllers

$$
\left\{\begin{array}{ll}
u_{1}(t)=\tilde{\varphi}(t) \cdot b_{1} & \text { when } \tag{7}\\
u_{2}(t)=\tilde{\varphi}(t) \cdot b_{2} & \text { when }
\end{array}\left|\begin{array}{l}
\tilde{\varphi}(t) \cdot b_{1} \\
\tilde{\varphi}(t) \cdot b_{2}
\end{array}\right|>\left|\begin{array}{l}
\tilde{\varphi}(t) \cdot b_{2} \\
\tilde{\varphi}(t) \cdot b_{1}
\end{array}\right|\right.
$$

where $\tilde{\varphi}$ is the solution of (5) with datum $\tilde{\varphi}^{0}$ at time $t=T$, control the system.
(1) The rank condition on the pairs $\left(A, b_{2} \pm b_{1}\right)$ is a necessary and sufficient condition for the controllability of the systems

$$
\begin{equation*}
x^{\prime}+A x=\left(b_{2} \pm b_{1}\right) u(t) . \tag{8}
\end{equation*}
$$

This implies that the system with controllers b_{1} and b_{2} is controllable too but the reverse is not true.
(2) The rank conditions on the pairs $\left(A, b_{2} \pm b_{1}\right)$ are needed to ensure that the set

$$
\begin{equation*}
\left\{t \in(0, T):\left|\varphi(t) \cdot b_{1}\right|=\left|\varphi(t) \cdot b_{2}\right|\right\} \tag{9}
\end{equation*}
$$

is of null measure, which ensures that the controls in (7) are genuinely of switching form.

Sketch of the proof:

There are two key points:
a) Showing that the functional J_{s} is coercive, i. e.,

$$
\lim _{\left\|\varphi^{0}\right\| \rightarrow \infty} \frac{J_{s}\left(\varphi^{0}\right)}{\left\|\varphi^{0}\right\|}=\infty
$$

which guarantees the existence of minimizers.
Coercivity is immediate since

$$
\left|\varphi(t) \cdot b_{1}\right|^{2}+\left|\varphi(t) \cdot b_{2}\right|^{2} \leq 2 \max \left[\left|\varphi(t) \cdot b_{1}\right|^{2},\left|\varphi(t) \cdot b_{2}\right|^{2}\right]
$$

and, consequently, the functional J_{s} is bounded below by a functional equivalent to the classical one J.
b) Showing that the controls obtained by minimization are of switching form.

This is equivalent to proving that the set

$$
I=\left\{t \in(0, T):\left|\tilde{\varphi} \cdot b_{1}\right|=\left|\tilde{\varphi} \cdot b_{2}\right|\right\}
$$

is of null measure.
Assume for instance that the set
$I_{+}=\left\{t \in(0, T): \tilde{\varphi}(t) \cdot\left(b_{1}-b_{2}\right)=0\right\}$ is of positive measure, $\tilde{\varphi}$ being the minimizer of J_{s}. The time analyticity of $\tilde{\varphi} \cdot\left(b_{1}-b_{2}\right)$ implies that $I_{+}=(0, T)$. Accordingly $\tilde{\varphi} \cdot\left(b_{1}-b_{2}\right) \equiv 0$ and, consequently, taking into account that the pair $\left(A, b_{1}-b_{2}\right)$ satisfies the Kalman rank condition, this implies that $\tilde{\varphi} \equiv 0$. This would imply that

$$
J\left(\varphi^{0}\right) \geq 0, \forall \varphi^{0} \in \mathbb{R}^{N}
$$

which may only happen in the trivial situation in which $x^{1}=e^{A T} x^{0}$, a trivial situation that we may exclude.

The Euler-Lagrange equations associated to the minimization of J_{s} take the form

$$
\int_{S_{1}} \tilde{\varphi}(t) \cdot b_{1} \psi(t) \cdot b_{1} d t+\int_{S_{2}} \tilde{\varphi}(t) \cdot b_{2} \psi(t) \cdot b_{2} d t-x^{1} \cdot \psi^{0}+x^{0} \cdot \psi(0)=0
$$

for all $\psi^{0} \in \mathbb{R}^{N}$, where

$$
\left\{\begin{array}{l}
S_{1}=\left\{t \in(0, T):\left|\tilde{\varphi}(t) \cdot b_{1}\right|>\left|\tilde{\varphi}(t) \cdot b_{2}\right|\right\}, \tag{10}\\
S_{2}=\left\{t \in(0, T):\left|\tilde{\varphi}(t) \cdot b_{1}\right|<\left|\tilde{\varphi}(t) \cdot b_{2}\right|\right\} .
\end{array}\right.
$$

In view of this we conclude that

$$
\begin{equation*}
u_{1}(t)=\tilde{\varphi}(t) \cdot b_{1} 1_{S_{1}}(t), \quad u_{2}(t)=\tilde{\varphi}(t) \cdot b_{2} 1_{S_{2}}(t), \tag{11}
\end{equation*}
$$

where $1_{S_{1}}$ and $1_{S_{2}}$ stand for the characteristic functions of the sets S_{1} and S_{2}, are such that the switching condition holds and the corresponding solution satisfies the final control requirement.

Optimality:

The switching controls we obtain this way are of minimal $L^{2}\left(0, T ; \mathbb{R}^{2}\right)$-norm, the space \mathbb{R}^{2} being endowed with the ℓ^{1} norm, i. e. with respect to the norm

$$
\left\|\left(u_{1}, u_{2}\right)\right\|_{L^{2}\left(0, T ; \ell^{1}\right)}=\left[\int_{0}^{T}\left(\left|\tilde{u}_{1}\right|+\left|\tilde{u}_{2}\right|\right)^{2} d t\right]^{1 / 2}
$$

(2) Switching active controls

- Motivation
- The finite-dimensional case
- The $1-d$ heat equation
- Open problems

3 Flow control \& Shocks

- Motivation
- Equation splitting
- An example on inverse design
- Open problems

Failure of the switching strategy

Consider the heat equation in the space interval $(0,1)$ with two controls located on the extremes $x=0,1$:

$$
\begin{cases}y_{t}-y_{x x}=0, & 0<x<1, \quad 0<t<T \\ y(0, t)=u_{0}(t), y(1, t)=u_{1}(t), & 0<t<T \\ y(x, 0)=y^{0}(x), & 0<x<1 .\end{cases}
$$

We look for controls $u_{0}, u_{1} \in L^{2}(0, T)$ such that the solution satisfies

$$
y(x, T) \equiv 0
$$

To build controls we consider the adjoint system

$$
\begin{cases}\varphi_{t}+\varphi_{x x}=0, & 0<x<1, \quad 0<t<T \\ \varphi(0, t)=\varphi(1, t)=0, & 0<t<T \\ \varphi(x, T)=\varphi^{0}(x), & 0<x<1 .\end{cases}
$$

It is well known that the null control may be computed by minimizing the quadratic functional
$J\left(\varphi^{0}\right)=\frac{1}{2} \int_{0}^{T}\left[\left|\varphi_{x}(0, t)\right|^{2}+\left|\varphi_{x}(1, t)\right|^{2}\right] d t+\int_{0}^{1} y^{0}(x) \varphi(x, 0) d x$.
The controls obtained this way take the form

$$
\begin{equation*}
u_{0}(t)=-\hat{\varphi}_{x}(0, t) ; u_{1}(t)=\hat{\varphi}_{x}(1, t), t \in(0, T) \tag{12}
\end{equation*}
$$

where $\hat{\varphi}$ is the solution associated to the minimizer of J.

For building switching controls we rather consider
$J_{s}\left(\varphi^{0}\right)=\frac{1}{2} \int_{0}^{T} \max \left[\left|\varphi_{x}(0, t)\right|^{2},\left|\varphi_{x}(1, t)\right|^{2}\right] d t+\int_{0}^{1} y^{0}(x) \varphi(x, 0) d x$.
But for this to yield switching controls, the following UC is needed. And it fails because of symmetry considerations!

$$
\text { meas }\left\{t \in[0, T]: \varphi_{x}(0, t)= \pm \varphi_{x}(1, t)\right\}=0
$$

This strategy yields switching controls for the control problem with two pointwise actuators:

$$
\begin{cases}y_{t}-y_{x x}=u_{a}(t) \delta_{a}+u_{b}(t) \delta_{b}, & 0<x<1, \quad 0<t<T \\ y(0, t)=y(1, t)=0, & 0<t<T \\ y(x, 0)=y^{0}(x), & 0<x<1,\end{cases}
$$

under the irrationality condition

$$
a \pm b \neq \frac{m}{k}, \forall k \geq 1, m \in \mathbb{Z}
$$

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The 1 - d heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems
(1) How many times do these controls switch?
(2) In a general PDE setting this leads to unique continuation problems of the form:

$$
\varphi_{t}+A^{*} \varphi=0 ;\left|B_{1}^{*} \varphi\right|=\left|B_{2}^{*} \varphi\right| \rightarrow \varphi=0 ? ? ? ? ? ?
$$

(3) Systems where the state equation switches as well.

References:

- M. Gugat, Optimal switching boundary control of a string to rest in finite time, preprint, October 2007.
- E. Z., Switching controls, preprint, 2008.

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The 1 - d heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems

Solutions of hyperbolic systems may develop shocks or quasi-shock configurations and this may affect in a significant manner control and design problems.

- For shock solutions, classical calculus fails;
- For quasi-shock solutions the sensitivity is so large that classical sensitivity clalculus is meaningless.

Burgers equation

- Viscous version:

$$
\frac{\partial u}{\partial t}-\nu \frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial u}{\partial x}=0 .
$$

- Inviscid one:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 .
$$

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The 1 - d heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems

In the inviscid case, the simple and "natural" rule

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial \delta u}{\partial t}+\delta u \frac{\partial u}{\partial x}+u \frac{\partial \delta u}{\partial x}=0
$$

breaks down in the presence of shocks

In the inviscid case, the simple and "natural" rule

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial \delta u}{\partial t}+\delta u \frac{\partial u}{\partial x}+u \frac{\partial \delta u}{\partial x}=0
$$

breaks down in the presence of shocks
$\delta u=$ discontinuous, $\frac{\partial u}{\partial x}=$ Dirac delta $\Rightarrow \delta u \frac{\partial u}{\partial x} ? ? ? ?$
The difficulty may be overcame with a suitable notion of measure valued weak solution using Volpert's definition of conservative products and duality theory (Bouchut-James, Godlewski-Raviart,...)

In the inviscid case, the simple and "natural" rule

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \rightarrow \frac{\partial \delta u}{\partial t}+\delta u \frac{\partial u}{\partial x}+u \frac{\partial \delta u}{\partial x}=0
$$

breaks down in the presence of shocks
$\delta u=$ discontinuous, $\frac{\partial u}{\partial x}=$ Dirac delta $\Rightarrow \delta u \frac{\partial u}{\partial x} ? ? ? ?$
The difficulty may be overcame with a suitable notion of measure valued weak solution using Volpert's definition of conservative products and duality theory (Bouchut-James, Godlewski-Raviart,...)

A new viewpoint: Solution $=$ Solution + shock location. Then the pair (u, φ) solves:

$$
\begin{cases}\partial_{t} u+\partial_{x}\left(\frac{u^{2}}{2}\right)=0, & \text { in } Q^{-} \cup Q^{+} \\ \varphi^{\prime}(t)[u]_{\varphi(t)}=\left[u^{2} / 2\right]_{\varphi(t)}, & t \in(0, T) \\ \varphi(0)=\varphi^{0}, & \text { in }\left\{x<\varphi^{0}\right\} \cup\left\{x>\varphi^{0}\right\} \\ u(x, 0)=u^{0}(x), & \end{cases}
$$

The corresponding linearized system is:

$$
\left\{\begin{array}{l}
\partial_{t} \delta u+\partial_{x}(u \delta u)=0, \quad \text { in } Q^{-} \cup Q^{+}, \\
\delta \varphi^{\prime}(t)[u]_{\varphi(t)}+\delta \varphi(t)\left(\varphi^{\prime}(t)\left[u_{x}\right]_{\varphi(t)}-\left[u_{x} u\right]_{\varphi(t)}\right) \\
\quad+\varphi^{\prime}(t)[\delta u]_{\varphi(t)}-[u \delta u]_{\varphi(t)}=0, \quad \text { in }(0, T), \\
\delta u(x, 0)=\delta u^{0}, \quad \text { in }\left\{x<\varphi^{0}\right\} \cup\left\{x>\varphi^{0}\right\}, \\
\delta \varphi(0)=\delta \varphi^{0},
\end{array}\right.
$$

Majda (1983), Bressan-Marson (1995), Godlewski-Raviart (1999), Bouchut-James (1998), Giles-Pierce (2001), Bardos-Pironneau (2002), Ulbrich (2003), ...

None seems to provide a clear-cut recipe about how to proceed within an optimization loop.

A new method

A new method: Splitting + alternating descent algorithm.
C. Castro, F. Palacios, E. Z., M3AS, 2008.

Ingredients:

- The shock location is part of the state.

State $=$ Solution as a function + Geometric location of shocks.

- Alternate within the descent algorithm:
- Shock location and smooth pieces of solutions should be treated differently;
- When dealing with smooth pieces most methods provide similar results;
- Shocks should be handeled by geometric tools, not only those based on the analytical solving of equations.

Lots to be done: Pattern detection, image processing, computational geometry,... to locate, deform shock locations,....

Compare with the use of shape and topological derivatives in elasticity:

Ifération 80

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The 1 - d heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems

An example: Inverse design of initial data

Consider

$$
J\left(u^{0}\right)=\frac{1}{2} \int_{-\infty}^{\infty}\left|u(x, T)-u^{d}(x)\right|^{2} d x
$$

$u^{d}=$ step function.
Gateaux derivative:

$$
\delta J=\int_{\left\{x<\varphi^{0}\right\} \cup\left\{x>\varphi^{0}\right\}} p(x, 0) \delta u^{0}(x) d x+q(0)[u]_{\varphi^{0}} \delta \varphi^{0},
$$

$(p, q)=$ adjoint state

$$
\left\{\begin{array}{l}
-\partial_{t} p-u \partial_{x} p=0, \quad \text { in } Q^{-} \cup Q^{+}, \\
{[p]_{\Sigma}=0,} \\
q(t)=p(\varphi(t), t), \text { in } t \in(0, T) \\
q^{\prime}(t)=0, \text { in } t \in(0, T) \\
p(x, T)=u(x, T)-u^{d}, \quad \text { in }\{x<\varphi(T)\} \cup\{x>\varphi(T)\} \\
q(T)=\frac{\frac{1}{2}\left[\left(u(x, T)-u^{d}\right)^{2}\right]_{\varphi(T)}}{[u]_{\varphi(T)}} .
\end{array}\right.
$$

- The gradient is twofold $=$ variation of the profile + shock location.
- The adjoint system is the superposition of two systems = Linearized adjoint transport equation on both sides of the shock + Dirichlet boundary condition along the shock that propagates along characteristics and fills all the region not covered by the adjoint equations.

State u and adjoint state p when u develops a shock:

A new method: splitting+alternating descent

- Generalized tangent vectors $\left(\delta u^{0}, \delta \varphi^{0}\right) \in T_{\mu^{0}}$ s. t.

$$
\delta \varphi^{0}=\left(\int_{x^{-}}^{\varphi^{0}} \delta u^{0}+\int_{\varphi^{0}}^{x^{+}} \delta u^{0}\right) /[u]_{\varphi^{0}} .
$$

do not move the shock $\delta \varphi(T)=0$ and

$$
\begin{gathered}
\delta J=\int_{\left\{x<x^{-}\right\} \cup\left\{x>x^{+}\right\}} p(x, 0) \delta u^{0}(x) d x, \\
\left\{\begin{array}{l}
-\partial_{t} p-u \partial_{x} p=0, \quad \text { in } \hat{Q}^{-} \cup \hat{Q}^{+}, \\
p(x, T)=u(x, T)-u^{d}, \quad \text { in }\{x<\varphi(T)\} \cup\{x>\varphi(T)\} .
\end{array}\right.
\end{gathered}
$$

For those descent directions the adjoint state can be computed by "any numerical scheme"!

- Analogously, if $\delta u^{0}=0$, the profile of the solution does not change, $\delta u(x, T)=0$ and

$$
\delta J=-\left[\frac{\left(u(x, T)-u^{d}(x)\right)^{2}}{2}\right]_{\varphi(T)} \frac{\left[u^{0}\right]_{\varphi^{0}}}{[u(\cdot, T)]_{\varphi(T)}} \delta \varphi^{0} .
$$

This formula indicates whether the descent shock variation is left or right!

- Analogously, if $\delta u^{0}=0$, the profile of the solution does not change, $\delta u(x, T)=0$ and

$$
\delta J=-\left[\frac{\left(u(x, T)-u^{d}(x)\right)^{2}}{2}\right]_{\varphi(T)} \frac{\left[u^{0}\right]_{\varphi^{0}}}{[u(\cdot, T)]_{\varphi(T)}} \delta \varphi^{0} .
$$

This formula indicates whether the descent shock variation is left or right!

WE PROPOSE AN ALTERNATING STRATEGY FOR DESCENT

In each iteration of the descent algorithm do two steps:

- Step 1: Use variations that only care about the shock location
- Step 2: Use variations that do not move the shock and only affect the shape away from it.

Splitting+Alternating wins!

Sol y sombra!

Results obtained applying Engquist-Osher's scheme and the one based on the complete adjoint system

Splitting+Alternating method.

Splitting+alternating is more efficient:

- It is faster.
- It does not increase the complexity.
- Rather independent of the numerical scheme.

Extending these ideas and methods to more realistic multi-dimensional problems is a work in progress and much remains to be done.
Numerical schemes for PDE + shock detection + shape, shock deformation + mesh adaptation,...

Outline

(1) Motivation
(2) Switching active controls

- Motivation
- The finite-dimensional case
- The 1 - d heat equation
- Open problems
(3) Flow control \& Shocks
- Motivation
- Equation splitting
- An example on inverse design
- Open problems

Open problems

- More complex geometry of shocks
- Multi-dimensional problems: Shocks are located on hypersurfaces
- Adaptation to small viscosity: quasishocks
- Flux identification problems (F. James and M. Sepúlveda)
- Interpretation in the context of gradient methods: zig-zag gradient methods

$$
z^{\prime}(t)=-\nabla J(z) ; \quad \frac{z^{k+1}-z^{k}}{\Delta t}=-\nabla J\left(z^{k}\right) .
$$

Thank you!

bcam
 BASOUE CENTES tor
 APPUED MTHEWIC
 wwe.bamath.org

Enrique Zuazua

